Modeling an outbreak of dolphin morbillivirus: US east coast (June 2013 – 2014)

> Sinead Morris Princeton University <u>semorris@princeton.edu</u>

- Background
- Data preparation
- Developing the model
- Results
- Conclusions

- Background
- Data preparation
- Developing the model
- Results
- Conclusions

Background

Dolphin morbillivirus (DMV) : same virus genus as measles

Characteristics: highly contagious, respiratory transmission, lifelong immunity (i.e. similar to SIR assumptions)

Severe epidemics observed around the world

???

Marine mammals are challenging to study

Population movements? Missed cases?

US outbreak 2013-2014

NATIONAL GEOGRAPHIC

LATEST STORIES

PHOTO OF THE DAY GENDER

GENDER REVOLUTION

What's Killing Bottlenose Dolphins?

Last outbreak was 25 years ago... Why now?

Epidemic progression

Modeling aims

Specific questions to answer:

How transmissible is the disease?

How long is an individual infectious for?

How far can an infected individual travel?

Which areas are at greatest risk?

General idea:

- Background
- Data preparation
- Developing the model
- Results
- Conclusions

Data

Data = stranding events i.e. animals that wash up on shore:

	allude, longitude, date, condition, sex,													
	Region	County	State	Latitude	Latitude Units	Longitude	Longitude Units	Observation Date	Year of Observation	Month of Observation	Day of Observation	Observation Status	Sex	
	NE	Sussex	DE	38.8031	decimal degrees	-75.18532	decimal degrees	2014-APR-08	2014	APR	8	MUMMIFIED/SKELETAL	UNKNOWN	
	NE	Sussex	DE	38.85588	decimal degrees	-75.24261	decimal degrees	2014-MAY-05	2014	MAY	5	ADVANCED DECOMPOSITION	FEMALE	
	NE	Sussex	DE	38.67672	decimal degrees	-75.06885	decimal degrees	2014-MAY-17	2014	MAY	17	ADVANCED DECOMPOSITION	MALE	
	NE	Sussex	DE	38.91356	decimal degrees	-75.30406	decimal degrees	2014-MAY-29	2014	MAY	29	MODERATE DECOMPOSITION	MALE	
	NE	Sussex	DE	38.66297	decimal degrees	-75.06713	decimal degrees	2014-JUN-13	2014	JUN	13	MODERATE DECOMPOSITION	MALE	
	SE	Brevard	FL	28.02498	decimal degrees	-80.536507	decimal degrees	2014-JAN-15	2014	JAN	15	MUMMIFIED/SKELETAL	UNKNOWN	
1					docimal		docimal							

latitude, longitude, date, condition, sex, .

But: cause of death could be DMV

OR

something else

e.g. injury, natural causes...

We want only disease-induced strandings in our model

Challenge: how to separate DMV strandings from everything else?

Data Preparation

What we have:

1. Strandings from 2013 - 2014 outbreak 'disease' + 'background' strandings

2. Strandings from years before the outbreak (1996 – 2012) only 'background' strandings

What we need:

1. Only 'disease' strandings from outbreak

Basic idea:

Data Preparation

disease-only strandings

Data Preparation

What we have:

1. Strandings from 2013-2014 outbreak 'disease' + 'background' strandings

What we need:

1. Only 'disease' strandings from outbreak

AND...

2. Population distribution ----- estimate movement of susceptibles

Population distribution

Bottlenose dolphin population: 5 main groups

Challenge: how is the total population size (26,300) distributed along the coast?

Population distribution

Assume: strandings \propto population size i.e. \uparrow strandings $\rightarrow \uparrow$ dolphins

Use: strandings from before outbreak (no virus \Rightarrow susceptible)

For each time, *t*, and latitude, *l*:

- Background
- Data preparation
- Developing the model
- Results
- Conclusions

General idea

Disease dynamics:

How transmissible is the disease? reproductive ratio, R₀ How long is an individual infectious for? infectious period

Spatial component:

Which areas are at greatest risk?

How far can an infected individual travel?

Model from seismology

Ogata (1998) Ann. Inst. Stat. Math

Earthquakes, meningococcal disease, predicting crime rates, ...

clustering of aftershocks

clustering of strandings

General idea

We have estimates of:

- 1. population distribution
- 2. strandings due to disease

But:

Noisy & sparse

SIR model + spatial component + random noise

Solution:

SIR assumption: individuals have constant rate of infecting others

Our assumption: transmission is a **probability** that changes over time and space

Assume individual probability of infecting others changes over time:

 $g(t) = \gamma \exp^{-\gamma t}$

Assume individual probability of infecting others changes over time: over space:

$$g(t) = \gamma \exp^{-\gamma t}$$

We have an approximation of:

- 1. population distribution
- 2. strandings due to disease

But:

Noisy & sparse

SIR model + spatial component + random noise

And finally...

g(t)

Total # new cases at time t and latitude /:

- Background
- Data preparation
- Developing the model
- Results
- Conclusions

Morris et al. (2015) J. R. Soc. Interface

Morris et al. (2015) J. R. Soc. Interface

Results

В Α 200 -15-How does the risk Risk of infection 100 100 Risk of infection of infection change 10. in space and time? 5 50· 0 0 100 200 300 27 39 29 31 33 35 37 41 0 Time (days) Latitude 42 -40 Monitor this location during future 38 *R*₀ ~ 3 outbreaks 36 _atitude 34 32 -Virginia beach 30 -28 -Morris et al. (2015) J. R. Soc. Interface 26 -

- Background
- Data preparation
- Developing the model
- Results
- Conclusions

Conclusions

How long is an individual infectious for?

~ 8 days

How transmissible is the disease?

 $R_0 < 1$ in general, but can reach as high as ~ 3

How far can an infected individual travel?

up to 2 latitude degrees

Which areas are at greatest risk?

Virginia beach, during summer migrations

Adapted SIR model can provide new insight into a poorly understood disease like DMV

Ongoing research

What triggers new outbreaks?

How widespread is the virus?

Why 25 years?

Want to find out more?

Data (.csv file) available at:

https://github.com/SineadMorris/Dolphin-morbillivirus

Full details of model, analysis etc: <u>http://rsif.royalsocietypublishing.org/content/</u><u>12/112/20150676</u>

Partially observed epidemics in wildlife hosts: modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, June 2013–2014

Sinead E. Morris^{1,†}, Jonathan L. Zelner^{2,†}, Deborah A. Fauquier³, Teresa K. Rowles³, Patricia E. Rosel⁴, Frances Gulland^{5,6} and Bryan T. Grenfell^{1,7}

Bryan Grenfell Princeton University

Thanks

Jon Zelner University of Michigan

Deborah Fauquier NOAA

And many others...

DMV project:PhTeresa Rowles, NOAAJesPatricia Rosel, NOAACesPatricia Rosel, NOAACesSarah Wilkin, NOAAAnAleta Hohn, NOAAAnAleta Hohn, NOAAVilliam MacLellan, NOAAWilliam MacLellan, NOAAFrances Gulland, The Marine Mammal CenterThe Marine Mammal Stranding NetworkRAPIDD

PhD committee:

Jessica Metcalf, Princeton University Cecile Viboud, NIH Andrea Graham, Princeton University

