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Since the 1980/90s the field has been steadily growing
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SCIENCE * CORONAVIRUS

What Are Mathematical Models
Of Covid-19?

United Kingdom

Britain's pandemic modellers Mathematical model suggests a clue as to
say future large waves of COVID when COVID-19 pandemic will turn into an
possible endemic

CURRENT EVENTS

The Math of Ending the Pandemic:

Exponential growth bias: The numerical error behind Covid-19

Exponential Growth and Decay
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General framework & examples




General model framework
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Agent-based
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Compartmental models: SIR model

Assumptions

- Health states: susceptible, infectious, recovered
- Parameters: , recovery rate

- Lifelong immunity

recovery
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SIR model

SEIR model

SEIRS model

Susceptible Infectious Recovered

Susceptible Exposed Infectious Recovered

Susceptible Exposed Infectious Recovered

Loss of immunity



General model framework
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Uses




What can models be used for?

Predicting what could
happen in the future

FORECASTING
/ PREDICTION

£

Exploring
hypotheticals that
can’t be
implemented

SCENARIO
ANALYSIS

Gaining information
on something that
isn’t observed

ESTIMATION

Identifying the
underlying cause of
something

INFERENCE
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Forecasting / Prediction

Dengue Forecasting Project, 2015

Dengue cases

Iquitos, Peru

50

150

100

0

2012/13
—?—

Johansson et al 2019

FluSight Challenge, 2021/22

2 ¢ 4
IS data

(7))

R

=

e

<

©

=1

o}

(72}

o)

i (5

=

= yd

predictions
(up to 4 weeks)

Oct'-01 l Det;-01 I Fel:;-01 ' Apl:-01 l Jun'-01

4,000

3,000

2.000

1,000

0

Useful for: Situational awareness
Short-term planning




Incident cases

Scenario Analysis

Useful for: Exploring different hypotheses
Longer-term planning / assessment

Scenario Modeling Hub
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Dengue seropositivity

Estimation
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>0 >3 o0 os Useful for: Understanding disease (e.g. natural history)

Policy design
Better inputs for future models
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Lourenco et al 2017



AN Inference
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Absolute humidity a driver of flu seasonality
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infectious than adults
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Useful for: Understanding drivers of spread
Policy design
Building more accurate models



Interpreting model uncertainty




How much uncertainty is there?
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How much uncertainty is there? O D B
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How much uncertainty is there?
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Assessing model utility




How ‘good’ is this model?
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Total flu infections

How ‘good’ is this model?

Influenza-like
iliness (ILI)
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How ‘good’ is this model? B B O
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How ‘good’ is this model?
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How good is the fit?
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How ‘useful’ is this model?
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Combining models for decision-making




Incident cases

Ensemble models

Models can differ by inputs
structure
deterministic vs stochastic
mechanistic vs statistical

Ensembles combine output from multiple models

Mitigate risks of relying on one model
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Ensemble models

Example: COVID-19 forecasts

Ensemble consistently among best performing models, across all states

Average 4-week ahead weighted interval scores by model
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Caveat: resource intensive



Summary

Models come in many flavors
- mechanistic vs statistical

- compartmental, network, agent-based, ...

- stochastic vs deterministic

Models have many uses
- forecasting
- scenario analysis
- estimation & inference

There are ways to assess model uncertainty
- sensitivity analysis
- alternative structures
- role of stochasticity

... and utility

Ensemble models combine multiple models
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Questions?

Resources:

COVID / Flu Scenario Modeling Hubs
FluSight Challenge

Gurley & Wesolowski, Infectious Disease Transmission Models for Decision Makers, Coursera Online (free)
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