Modeling 101 for Public Health

Sinead Morris

Public Health Analytics and Modeling Fellow

Influenza Division, CDC

run7@cdc.gov

Mechanistic

Describe biological processes that drive disease spread

Statistical

Identify relationships between observed features

Pioneers of Infectious Disease Modeling

Hilda Hudson

Ronald Ross

1915-17

Anderson W McKendrick Ke

William Kermack

1927-33

Since the 1980/90s the field has been steadily growing

General model framework & examples

Use cases

Interpreting model uncertainty

Assessing model utility

Combining multiple models

General framework & examples

General model framework

« INFECTIOUS

Compartmental

« INFECTIOUS

Image sources: The Scientist, Meyers et al 2007, IEEE Spectrum

Compartmental models: SIR model

Assumptions

- Health states: susceptible, infectious, recovered
- Parameters: infection rate, recovery rate
- Lifelong immunity

General model framework

What can models be used for?

Predicting what could happen in the future

Exploring hypotheticals that can't be implemented

Gaining information on something that isn't observed

Identifying the underlying cause of something

FORECASTING / PREDICTION

SCENARIO ANALYSIS

ESTIMATION

INFERENCE

Forecasting / Prediction

Dengue Forecasting Project, 2015

FluSight Challenge, 2021/22

Useful for: Situational awareness Short-term planning

Scenario Analysis

Useful for: Exploring different hypotheses Longer-term planning / assessment

1.0

Proportion seropositive

- 0.0

Salje et al 2019

Inference

Absolute humidity a driver of flu seasonality

Children may be more infectious than adults

Useful for: Understanding drivers of spread Policy design Building more accurate models

Interpreting model uncertainty

How much uncertainty is there?

Sensitivity analysis

Pload jo plo

Lemaitre et al 2021

Assessing model utility

How 'good' is this model?

Days

How 'good' is this model?

How 'useful' is this model?

Combining models for decision-making

Ensemble models

Models can differ by inputs structure deterministic vs stochastic mechanistic vs statistical

Ensembles combine output from multiple models

Mitigate risks of relying on one model

Scenario Modeling Hub

FluSight Challenge

Ensemble models

Example: COVID-19 forecasts

Ensemble consistently among best performing models, across all states

Average 4-week ahead weighted interval scores by model

Caveat: resource intensive

Summary

Models come in many flavors

- mechanistic vs statistical
- compartmental, network, agent-based, ...
- stochastic vs deterministic

Models have many uses

- forecasting
- scenario analysis
- estimation & inference

There are ways to assess model uncertainty

- sensitivity analysis
- alternative structures
- role of stochasticity
- ... and utility

Ensemble models combine multiple models

Questions?

Resources:

COVID / Flu Scenario Modeling Hubs FluSight Challenge

Gurley & Wesolowski, Infectious Disease Transmission Models for Decision Makers, Coursera Online (free)

Acknowledgements: Matt Biggerstaff, Rebecca Borchering

Contact: Sinead Morris, run7@cdc.gov